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The effect of steady viscous forces on vibrations of shells with internal and annular flow has
been considered by using the time-mean Navier–Stokes equations. The model developed in
Part I of the present study, capable of simulating shells with nonuniform boundary conditions,
added masses and partial elastic bed, has been extended to include nonuniform prestress. The
effect of steady viscous forces has been added to the inviscid flow formulation considered in
Part II of the present study. A computer code, DIVA, has been constructed by using the model
developed in this series of papers. It has been validated by comparison with available results
for shells with uniform constraints and has been used to study shells with nonuniform
constraints and added lumped masses. # 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

Vibrations of empty and fluid-filled shells with nonuniform boundary conditions
and additional complications (added masses and partial elastic bed) have been studied in
Part I of the present study (Amabili & Garziera 2000). The problem has been extended in
Part II (Amabili & Garziera 2002) to consider pressurized shells in contact with internal,
external and annular ideal flows. The ideal flow considered is inviscid, irrotational and
incompressible. This third part concludes the study by considering the effect of steady
viscous effects of the flowing fluid on the shell vibrations.
Pa.ııdoussis et al. (1985, 1991) investigated the steady viscous effects on vibrations and

stability of clamped and cantilevered circular shells with internal and annular flow by
using the time-mean Navier–Stokes equations. They concluded that the effect of viscosity
is stabilizing for internal flow and destabilizing for annular flow. This result is mainly due
to the fact that the numerical analyses were performed by keeping constant the value of
the outlet pressure (by giving the inlet pressure necessary to reach the outlet pressure
required). As a consequence of the pressure drop, an additional triangular pressure
distribution is applied to the shell in the case of viscous flow. This pressure is internal,
therefore stabilizing, for internal flow and destabilizing for external annular flow.
Pa.ııdoussis et al. (1985, 1991) also found that the effect of viscosity was more pronounced
for annular flow than for internal flow.
0889-9746/02/060795+15 $35.00/0 # 2002 Elsevier Science Ltd. All rights reserved.
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El Chebair et al. (1990) and Nguyen et al. (1994) investigated the effect of unsteady
viscous forces, which represent the time-dependent fluid viscous forces, for circular
cylindrical shells with internal and annular flow. In particular, El Chebair et al. (1990)
used the linearized Navier–Stokes equation to obtain the unsteady viscous forces for
incompressible viscous flow for simply supported shells. The solution was obtained
analytically; some difficulties were found in applying the no-slip condition at the shell wall.
As discussed by Nguyen et al. (1994), this solution was not completely satisfactory.
For this reason, Nguyen et al. (1994) used a CFD-based model to study stability of
cantilevered shells considering unsteady viscous forces. The finite-difference-based, time-
marching technique with artificial compressibility was used to solve the linearized,
unsteady Navier–Stokes equations. They found that unsteady viscous effects tend to be
reduced with diminishing annular gap width, provided that the gap is sufficiently small.
In the present study, the effect of steady viscous forces on vibrations of shell with

internal and annular flows has been considered by using the time-mean Navier–Stokes
equations. As observed by El Chebair et al. (1990), this effect is more important than the
effect of unsteady viscous forces. The model developed in Part I of the present study
(Amabili & Garziera 2000), capable of simulating shells with nonuniform boundary
conditions, added masses and partial elastic bed, has been extended to include nonuniform
prestress. The effect of steady viscous forces has been added to the inviscid flow
formulation considered in Part II (Amabili & Garziera 2001). A computer code, DIVA,
has been developed by using the model developed in this series of papers. It has been
validated by comparison with available results for shells with uniform constraints and has
been used to study shells with nonuniform constraints and added lumped masses.

2. POTENTIAL ENERGY ASSOCIATED WITH MEMBRANE
NONUNIFORM PRESTRESS

Similar to Parts I and II of the present study (Amabili & Garziera 2000, 2001), a circular
cylindrical shell of length L, radius R and thickness h is considered. The cylindrical
coordinates x, r, y are used with origin on the upstream shell base. The displacements of
the shell mean surface are indicated with u, v, w in the axial, circumferential and radial
directions, respectively. The additional strain energy stored by the shell during vibration
under membrane prestress is given by (e.g., Leissa 1973)

VP ¼
Z 2 p

0

Z L

0

Z h=2

�h=2
sxex þ syey þ txy gxy
� �

dx R dy dz

¼
Z 2 p

0

Z L

0

Nxex þNyey þNxy gxy
� �

dx R dy; ð1Þ

where Nx, Ny and Nxy are the membrane forces per unit length, in axial, circumferential
and tangential directions, respectively, ex, ey and gxy are the strains in axial, circumferential
and tangential directions, respectively, and sx, sy and txy are the corresponding stresses. In
equation (1), only the second-order terms of the nonlinear strain-displacement equations
must be used (e.g., Soedel 1993). The linear part is used to find the stress resultants
necessary to evaluate the membrane forces per unit length. In equation (1), the membrane
forces due to vibrations have been neglected with respect to the initial prestress; this is
necessary to retain linear equations of motion [see, e.g., Soedel (1993)].
Different nonlinear strain–displacement equations can be used according to different

nonlinear shell theories. By using the Sanders–Koiter nonlinear shell theory, these
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relationships are (e.g. Leissa 1973; Yamaki 1984; Selmane & Lakis 1997)
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Substituting the second-order parts of equations (2) into equation (1), the additional
potential energy of the shell due to nonuniform prestress is obtained. The additional
stiffness matrix of the system is obtained by using the expansion of shell displacements
introduced in Parts I and II (Amabili & Garziera 2000, 2001)
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for symmetric modes with respect to y ¼ 0, and
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for antisymmetric modes with respect to y ¼ 0, and the expressions of the membrane
forces per unit length. The membrane forces for the particular case of nonuniform
prestress due to viscous flow are evaluated in the next section. In equation (3a) and (3b), n
is the number of circumferential waves, m is the number of axial half-waves, and j ¼ 1, 2, 3
indicates the modes with prevalent radial, circumferential and longitudinal displacements,
respectively.

3. STEADY LOADS FOR FULLY DEVELOPED TURBULENT FLOW

In case of fully developed turbulent, incompressible axial flow inside or outside a shell, it is
possible to evaluate the steady loads by using the time-mean Navier–Stokes equations
(Laufer 1953)
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where ð Þ is the time-mean, rF is the fluid mass-density, Z is the kinematic viscosity and ux,
uy, ur are the fluctuating velocities in axial, angular and radial directions, respectively.
Long mathematical manipulations are required to obtain the results of interest for internal
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flow (Pa.ııdoussis et al. 1985, 1991), namely,
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rF
R

U2
tx� rFu2r þ rF

Z r

R

u2y � u2r
r

drþ Pð0;RÞ; ð5Þ

Ut ¼ �Z
dU

dr

� �1=2
r¼R

¼ ðtW=rF Þ
1=2 ¼

1

8
fU2

� �1=2
; ð6Þ

where U is the mean axial flow velocity, Ut is the so-called stress velocity, tw is the fluid
frictional force per unit area on the shell, and f is the friction factor.
For external and annular flows, the solutions of the time-mean Navier–Stokes equations

are (Pa.ııdoussis et al., 1985, 1991)
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where R1 is the radius of the outer rigid cylinder delimiting the flow (eventually R1 ! 1
for unbounded external flow) and rm is the radius at which the mean velocity U is
maximum. The value of rm cannot be analytically obtained. However, the experiments of
Brighton & Jones (1964) showed that if R=R150 �8, rm can be approximated by its
counterpart in case of laminar flow, i.e.,

rm ¼
R21 � R2

2 lnðR1=RÞ

� �1=2
: ð9Þ

On the shell surface, a particularly simple expression is obtained from equation (5)
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The pressure drop in the shell is
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Similarly, equation (7) evaluated at r ¼ R becomes
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where P now is external with respect to the shell, and the pressure drop is

Pð0;RÞ � PðL;RÞ ¼
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LfU2:

Essentially, equation (10) can be considered as a special case of equation (11) where the
radius delimiting externally the fluid domain is R1 ¼ R and rm ¼ 0.
The friction factor f in equations (6) and (8) can be calculated by using the experimental

Colebrook equation
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where d is the average height of surface imperfections of the shell surface and Re is the
Reynolds number. In particular, Re ¼ 2RU=Z for internal flow, Re ¼ 2ðR1 � RÞU=Z for
external annular flow and 2ðR1 � RÞ is the equivalent hydraulic diameter for annular flow.
The root of equation (12) can easily be found numerically.
The effect of steady viscous forces on shell dynamics consists of (i) a constant

distributed axial load applied to the shell surface and (ii) a radial pressure exerted by
the fluid on the shell, which is linearly decreasing with x, as shown by equations (6)
and (10) and equations (8) and (11) for internal and external flows, respectively. In
particular, for both internal and external flows, the constant axial force per unit area is
given by

tw ¼ rFU
2
t : ð13Þ

and the radial pressure is given by equation (10) or (11) for internal or external flow,
respectively.
The force per unit length in angular direction is given by
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where P0 is the pressure at x ¼ 0 (entrance pressure) on the shell wall. The average force
per unit length in angular direction is %NNy ¼ RðP0 � rFLU

2
t =RÞ for internal flow and %NNy ¼
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2
t =ðR

2
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for external annular flow.

For equilibrium and congruence, the force per unit length in axial direction is
given by
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where n is Poisson ratio, kS ¼ 2pRhE=L is the axial stiffness of the shell, keq ¼
1=ð1=k1 þ 1=kS þ 1=k2Þ and k1 ¼

R 2p
0

*kk0ðyÞR dy ¼ 2pR *kk0;0 and k2 ¼
R 2p
0

*kkLðyÞR dy ¼
2pR *kkL;0 are the axial stiffnesses of the elastic constraints at x = 0, L, respectively, as
computed in Appendix A of Part II of the present study (Amabili & Garziera 2001).
In equation (15), the contribution of %NNy to the shell contraction in axial direction has
been considered and the two axial forces necessary at the shell ends for equilibrium have
been considered equal in magnitude.

4. POTENTIAL ENERGY DUE TO VISCOUS FORCES

The constant forces per unit length due to uniform pressurization of shells have already
been investigated in Part II of the present study. Only the effect of viscous steady forces is
investigated here. In particular, the case of internal flow is analysed since the case of
external flow is immediately obtained as a particular case, as shown in the previous
section.
The forces per unit length to be inserted in equation (1) are

Nx ¼ rFU
2
t ½1

2
� nðkeq=kSÞ
L� x

� �
; Ny ¼ �rFU

2
t 2x Nxy ¼ 0 ð16a2cÞ
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The potential energy VV stored by the shell during vibrations under initial prestress due to
viscous forces is given by
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In equation (17), the Sanders–Koiter nonlinear shell theory has been used to obtain the
second-order strain–displacement relationships, see equations (2). After mathematical
manipulations of equation (17), the following expression is obtained for symmetric modes:
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where dn;s is the Kronecker delta, Bn ¼ 2 if n ¼ 0; and Bn ¼ 1 if n > 0.
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For antisymmetric modes, equation (18a) is modified into
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In case of nonuniform prestress due to a different load with respect to viscous forces, the
approach is similar.
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5. STIFFNESS MATRIX DUE TO VISCOUS FORCES

Only a finite number of modes in the Rayleigh–Ritz expansion are retained. The three-
dimensional matrix q of the Ritz coefficients is introduced

qnmj ¼
anmj for symmetric modes; n ¼ 0; . . .N � 1; m ¼ 1; . . . ; *NN; j ¼ 1; 2; 3;

bnmj for antisymmetric modes; n ¼ 1; . . .N; m ¼ 1; . . . ; *NN; j ¼ 1; 2; 3:

(
ð19Þ

In equation (19), the expansion of symmetric and antisymmetric modes involves 3�N �
*NN terms. The potential energy associated with initial prestress due to viscous forces can be
written as
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for symmetric modes, and
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for antisymmetric modes.

6. NUMERICAL RESULTS

Numerical results have been obtained by using the computer code DIVA (Amabili &
Garziera 2001) where steady viscous loads have been included. Calculations have been
performed to (i) validate the computer code by comparison with available results for shells
with uniform constraints; (ii) to show the convergence of the method by increasing the
number of terms in the Ritz expansion; (iii) to study shells clamped at some points around
the edges and otherwise simply supported (riveted shells); (iv) to investigate the effects of
steady viscous loads; and (v) to study shells with lumped masses; this configuration is of
interest in some applications.

6.1. Validation and Convergence

The computer code has been validated by analysing a circular cylindrical shell, clamped at
the ends, and having the following characteristics: R ¼ 0�0909m, L ¼ 1m, h ¼ 0�5mm,
E ¼ 206� 109 Pa, r ¼ 7 800 kg/m3, rF ¼ 1 000 kg/m3 and n ¼ 0�3. The shell is assumed
to have zero internal roughness, contains flowing water with the kinematic viscosity
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1�2� 10�6m2/s and is immersed in external still water delimited by an external radius of
R1 ¼ 0�1m. The same case was previously studied by Pa.ııdoussis et al. (1985) for modes
with three circumferential waves (n ¼ 3) by using a model with three longitudinal modes
and by assuming rigid baffles outside the shell length instead of a flexible shell as in the
present model. Both present calculations and results of Pa.ııdoussis et al. (1985) have been
obtained by keeping the outlet pressure (downstream) equal to zero and giving
the required value to the inlet pressure (upstream), as calculated by using the
Colebrook equation (12). A nondimensional fluid velocity V is introduced for
convenience, defined as in Pa.ııdoussis et al. (1985) by V ¼ U=fE=½rSð1� n2Þ
g1=2, U being
the dimensional velocity; similarly, a non-dimensional, frequency O is defined as
O ¼ LR=fE=½rSð1� n2Þ
g1=2, L being the corresponding circular frequency.
A comparison of results obtained with the computer code DIVA and by Pa.ııdoussis et al.

(1985) is given in Figure 1. The agreement between the curve (Pa.ııdoussis et al. 1985) and
the points (present results) is sufficiently good, partially excluding the third mode.
Differences can be attributed mainly to the different boundary conditions for the liquid
outside the shell length used in the two studies, and secondarily to the different numbers of
modes used in the expansion of the shell displacement. Present results have been obtained
by using 3� 20 longitudinal modes in the Ritz expansion (20 is the maximum number of
longitudinal half-waves) given by equation (3), and the stiffnesses of the axial and
rotational distributed springs used to simulate clamped ends are *kk ¼ 109 N=m2 and
c ¼ 108 N/m, respectively.
Figure 2 shows the results obtained for the same case by retaining 3� 40 modes in the

expansion of the shell displacement; results obtained with 3� 20 modes, as given in Figure
1, are also shown for comparison. This figure proves that the first and second modes
practically reached convergence with 20 longitudinal modes of the simply supported shell;
for higher modes, more terms are needed. However, the difference in the results obtained
with 20 and 40 modes is small for all the modes shown in Figure 2.
A comparison of results obtained with 3� 20 modes for viscous and inviscid flow is

given in Figure 3. It is clearly shown that the frequencies of free vibration decrease much
Figure 1. Nondimensional frequencies of free vibration O of a clamped shell conveying water versus
nondimensional flow velocity; calculations for zero outlet pressure; modes with n ¼ 3 and the nondimensiona-

lization scheme of Pa.ııdoussis et al. (1985): }, results from Pa.ııdoussis et al. (1985); K, present results.



Figure 2. Nondimensional frequencies of free vibration O of clamped shell conveying water versus
nondimensional flow velocity; calculations for zero outlet pressure; modes with n ¼ 3 and the nondimensiona-
lization scheme of Pa.ııdoussis et al. (1985): &, present results with 3� 20 longitudinal modes; m, present results

with 3� 40 longitudinal modes.

Figure 3. Nondimensional frequencies of free vibration O of clamped shell conveying water versus
nondimensional flow velocity; calculations for zero outlet pressure; modes with n ¼ 3 and the nondimensiona-

lization scheme of Pa.ııdoussis et al. (1985): K, viscous flow; *, inviscid flow.
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more with flow velocity for inviscid flow. However, it must be considered that calculations
have been made by keeping the outlet pressure constant. It means that, for viscous flow,
the inlet pressure becomes larger by increasing the flow velocity with respect to the inviscid
case. This result is discussed in more detail in Section 6.3.
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6.2. Riveted Shell (Simply Supported Shell With Clamped Points)

The case analysed here was studied by Amabili & Garziera (2001) by considering inviscid
flow. It considers a circular cylindrical shell containing flowing water and having the
following characteristics: L=R ¼ 2, h=R ¼ 0 �01, L ¼ 1m, E ¼ 206� 109 Pa,
r ¼ 7 850 kg/m3, rF ¼ 1000 kg/m3 and n ¼ 0�3. Kinematic viscosity 1�2� 10�6m2/s and
internal roughness (average height of internal surface imperfections) of the shell of 0�8 mm
are assumed. A nondimensional fluid velocity V is introduced for convenience, defined as
in Weaver & Unny (1973) by V ¼ U=fðp2=LÞ½D=ðr hÞ
1=2g, with D ¼ Eh3=½12ð1� n2Þ
;
similarly, a nondimensional, generally complex, frequency O is defined as
O ¼ L=fðp2=L2Þ½D=ðrhÞ
1=2g, L being the corresponding circular frequency. Nonuniform
boundary conditions are assumed to be around the shell ends, as in the case of riveted
shell. In particular, four equispaced clamped arcs, simulating rivets, of an angular
amplitude of 3�58 are considered at each shell end. These arcs are symmetrically distributed
with respect to the origin y ¼ 0 and away from this point; both slope in the axial direction
and axial displacements are restrained at the rivet location by using springs of very high
stiffness ( *kk ¼ 1010 N=m2 and c ¼ 1010 N/m) simulating rigid constraints. Outside these
clamped arcs, the shell is simply supported. In the Ritz expansion, 3� 20� 10 modes are
used, where 20 is the maximum number of circumferential waves and 10 is the maximum
number of longitudinal half-waves.
Figure 4 gives the nondimensional frequencies of free vibration of the shell versus the

non-dimensional fluid velocity V for both symmetric modes (with respect to y ¼ 0), see
Figure 4(a), and antisymmetric modes, see Figure 4(b). Calculations have been performed
by keeping the outlet pressure (downstream) equal to zero and giving the required value to
the inlet pressure (upstream). These results are compared with those obtained for the same
unpressurized shell containing inviscid flow (Amabili & Garziera 2001) and it shows that
steady viscous effects slightly increase the shell stability. This is explained by the
pressurization given for viscous flow at the inlet shell end to exceed the friction and to have
zero pressure at the outlet shell end; this gives a triangular pressure along the shell length.
However, in the inviscid case, zero pressure acts on the shell.

6.3. Effect of Steady Viscous Loads

Free vibrations of an aluminium circular cylindrical shell, simply supported at the ends,
containing flowing water have been studied. Two identical axial forces are assumed at the
shell ends to guarantee equilibrium in axial direction. The shell has the following
characteristics: R ¼ 0 �041275m, L ¼ 0 �1206m, h ¼ 0 �127mm, E ¼ 70� 109 Pa,
r ¼ 2700 kg/m3, rF ¼ 1000 kg/m3 and n ¼ 0�33. The shell contains flowing water and is
immersed in external still water delimited by an external radius R1 ¼ 0 �103m. Kinematic
viscosity 1 �2� 10�6 m2/s and internal roughness of the shell of 0�8 mm are assumed.
In contrast with previous cases, a constant inlet pressure of 7� 104 Pa is taken; and a
constant external pressure of 7�6135� 104 Pa is assumed to act outside the shell. Here,
3� 8� 10 modes are used in the Ritz expansion, where 8 is the maximum number of
circumferential waves and 10 is the maximum number of longitudinal half-waves.
Figure 5 shows the frequencies of free vibration for the modes with n ¼ 5, 6, 7

circumferential waves versus the flow velocity for both cases of viscous and inviscid flows.
The fundamental mode has n ¼ 6 circumferential waves; the second mode has n ¼ 7
circumferential waves. In this case, unsteady viscous loads significantly reduce both
frequencies and stability. As a consequence of keeping the inlet pressure constant, the
effect of viscous loads is that of decreasing the internal pressure along the shell. Therefore,



Figure 4. First three nondimensional frequencies of free vibration O for the shell with four rivets conveying
water versus nondimensional flow velocity; nondimensionalization scheme of Weaver & Unny (1973);
calculations for zero outlet pressure: }, viscous flow; *, inviscid flow. (a) Symmetric modes; and (b)

antisymmetric modes.

SHELLS WITH NONUNIFORM CONSTRAINTS: PART III 805
the effect seems to be the opposite of that previously found for the riveted shell in Section
6.2. Steady viscous forces in the flow give a triangular pressure distribution along the shell
and, secondarily, give an axial load. The triangular pressure diagram and the axial load
have a significant effect on the shell dynamics for sufficiently high flow velocities. The effect
of viscous loads can be considered stabilizing if compared with results for a shell
conveying inviscid flow, computed for the same outlet pressure; the contrary is obtained if
comparison is made with results computed for shells having the same inlet pressure.
Moreover, the effect of viscosity is much more significant in Figs. 3 and 5 than in Figure 4.
In fact, the effect of viscous loads is more important for very thin and long shells than for
thicker and shorter shells, as the one analysed in Figure 4. For longer shells, the pressure



Figure 5. First three frequencies of free vibration for a simply supported aluminium shell versus flow velocity;
calculations for a constant inlet pressure of 7� 104 Pa: K, inviscid flow; � , viscous flow.

Figure 6. First three frequencies of free vibration for a simply supported aluminium shell versus flow velocity;
calculations for constant inlet pressure of 7� 104 Pa: K, shell with three masses; � , shell without masses.
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drop is larger, and for thinner shells the effect of pressure on the shell dynamics is more
important than for thicker shells.

6.4. Shell with Lumped Masses

The same case studied in Section 6.3 is considered here with the addition of three lumped
masses of 50 g located at the same angular coordinate y ¼ 0 and at axial coordinate
x ¼ L=4, L=2 and 3L=4. The modes 3� 10� 12 are used in the Ritz expansion, where 10 is
the maximum number of circumferential waves and 12 is the maximum number of
longitudinal half-waves. Figure 6 shows the frequencies of free vibration of the first three



Figure 7. Complex mode shapes (in a radial section) of a simply supported aluminium shell with three masses
for flow velocity U ¼ 15m/s at five consecutive instants, with time difference T=8 (T is the vibration period);
points locate the lumped masses. (a) First mode, 44�1Hz; (b) second mode, 90�5Hz; (c) third mode, 104�6Hz; and

(d) fourth mode, 115�4Hz.
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symmetric modes (with respect to y ¼ 0) in case of viscous flow. The same shell without
masses is also shown for comparison. The presence of the lumped masses largely decreases
the fundamental frequency but has a much smaller effect on the second and third
eigenfrequencies.
Figure 7 shows the radial displacement w of the shell with the three masses for a flow

velocity of 15m/s. The first four symmetric, complex modes are represented in a radial
shell section at y ¼ 0 and are plotted in five different instants in order to show the
evolution of the shape in a vibration period. The corresponding three-dimensional mode
shapes, plotted at instant t ¼ 0, are shown in Figure 8. In particular, Figure 7(a) shows
that the shape of the fundamental mode is largely modified by the lumped masses with
respect to the one of the shell without masses.

7. CONCLUSIONS

This paper concludes the series of three papers on vibrations of shells with nonuniform
constraints, added masses, elastic bed and prestress conveying or immersed in annular
axial flow. The computer code DIVA has been developed in order to include many
complications by adding opportune stiffness and mass matrices. In particular, in the
present, Part III of the study, the effect of steady viscous forces has been investigated.
Steady viscous effects in the flow give a triangular pressure distribution along the shell and,



Figure 8. Mode shapes for flow velocityU ¼ 15m/s at instant t ¼ 0; points locate the lumped masses. (a) First
mode, 44�1Hz; (b) second mode, 90�5Hz; (c) third mode, 104�6Hz; (d) fourth mode, 115�4Hz.
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secondarily, give an axial load. The effect of viscous loads can be considered stabilizing if
compared with results computed for shells conveying inviscid flow having the same outlet
pressure; the contrary is obtained if comparison is made with results computed for shells
having the same inlet pressure.
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